leetcode-daily/cpp/2204/220426.cpp

73 lines
1.9 KiB
C++

#include <algorithm>
#include <vector>
#include <queue>
#include <unordered_set>
class DisjointSet {
private:
std::vector<int> parent;
public:
explicit DisjointSet(int n) {
parent.reserve(n);
for (int i = 0; i < n; ++i)
parent.push_back(i);
}
int Find(int x) {
return (parent[x] == x) ? x : (parent[x] = Find(parent[x]));
}
void Union(int x, int y) {
auto xR = Find(x), yR = Find(y);
if (xR != yR)
parent[xR] = yR;
}
};
struct TupleCmp {
bool operator()(const std::tuple<int, int, int>& x, const std::tuple<int, int, int>& y) const {
return std::get<2>(x) > std::get<2>(y);
}
};
/**
* 1584. Min Cost to Connect All Points
* You are given an array points representing integer coordinates of some points on a 2D-plane, where points[i] = [xi, yi].
* The cost of connecting two points [xi, yi] and [xj, yj] is the manhattan distance between them: |xi - xj| + |yi - yj|, where |val| denotes the absolute value of val.
* Return the minimum cost to make all points connected. All points are connected if there is exactly one simple path between any two points.
*/
class Solution {
public:
static int minCostConnectPoints(std::vector<std::vector<int>>& points) {
int n = points.size();
if (n <= 1)
return 0;
std::vector<std::tuple<int, int, int>> edgePairs;
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
edgePairs.emplace_back(i, j, std::abs(points[i][0] - points[j][0]) + std::abs(points[i][1] - points[j][1]));
std::priority_queue<std::tuple<int, int, int>, std::vector<std::tuple<int, int, int>>, TupleCmp> q(edgePairs.begin(), edgePairs.end());
DisjointSet s(n);
int ans = 0, cnt = 0;
while (cnt < n - 1) {
auto cur = q.top();
q.pop();
auto i = std::get<0>(cur);
auto j = std::get<1>(cur);
if (s.Find(i) != s.Find(j)) {
s.Union(i, j);
ans += std::get<2>(cur);
++cnt;
}
}
return ans;
}
};