leetcode-daily/cpp/2304/230420.cpp

54 lines
1.6 KiB
C++

#include <algorithm>
#include <queue>
#include <tuple>
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
explicit TreeNode(int x, TreeNode* left = nullptr, TreeNode* right = nullptr) : val(x), left(left), right(right) {}
};
/**
* 662. Maximum Width of Binary Tree
*
* Given the root of a binary tree, return the maximum width of the given tree.
* The maximum width of a tree is the maximum width among all levels.
* The width of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes that would be present in a complete binary tree extending down to that level are also counted into the length calculation.
* It is guaranteed that the answer will in the range of a 32-bit signed integer.
*/
class Solution {
public:
static int widthOfBinaryTree(const TreeNode* root);
};
int Solution::widthOfBinaryTree(const TreeNode* root) {
std::queue<std::tuple<const TreeNode*, int, unsigned long long>> q;
q.emplace(root, 0, 1);
int curLevel = -1;
std::pair<unsigned long long, unsigned long long> ans = {0, 0};
unsigned long long ret = 1;
while (!q.empty()) {
auto [node, level, id] = q.front();
q.pop();
if (curLevel != level) {
curLevel = level;
ret = std::max(ans.second - ans.first + 1, ret);
ans = {id, id};
}
ans.first = std::min(id, ans.first);
ans.second = std::max(id, ans.second);
if (node->left)
q.emplace(node->left, 1 + level, id << 1);
if (node->right)
q.emplace(node->right, 1 + level, 1 | (id << 1));
}
return std::max(ret, ans.second - ans.first + 1);
}
int main() {
;
}