95 lines
2.4 KiB
C++
95 lines
2.4 KiB
C++
#include <vector>
|
|
#include <iostream>
|
|
|
|
class Solution {
|
|
private:
|
|
inline static const int primes[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
|
|
inline static const int MOD = 1000000007;
|
|
public:
|
|
static int numberOfGoodSubsets(const std::vector<int>& nums) {
|
|
int cnt[31]{};
|
|
for (int i : nums)
|
|
++cnt[i];
|
|
// 2 x 3 = 6
|
|
// 2 x 5 = 10
|
|
// 2 x 7 = 14
|
|
// 2 x 11 = 22
|
|
// 2 x 13 = 26
|
|
// 3 x 5 = 15
|
|
// 3 x 7 = 21
|
|
long long ret = 0;
|
|
for (int i = 1; i < 1024; ++i) {
|
|
// Original numbers
|
|
long long now = 1;
|
|
for (int j = 0; j < 10; ++j)
|
|
if (i & (1 << j))
|
|
now = (now * cnt[primes[j]]) % MOD;
|
|
ret = (ret + now) % MOD;
|
|
|
|
if (i & 1) {
|
|
// 2-related numbers
|
|
for (int j = 1; j <= 5; ++j) {
|
|
if ((i & (1 << j)) && (now = cnt[primes[j] << 1])) {
|
|
// Now, there is no 2, no primes[j], but (primes[j] << 1).
|
|
for (int k = 1; k < 10; ++k)
|
|
if (k != j && (i & (1 << k)))
|
|
now = (now * cnt[primes[k]]) % MOD;
|
|
ret = (ret + now) % MOD;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (i & 2) {
|
|
// 3-related numbers
|
|
// Only 5 (indexed 2) and 7 (indexed 3) is valid.
|
|
if ((i & 4) && (now = cnt[15])) {
|
|
for (int k = 0; k < 10; ++k)
|
|
if (k != 1 && k != 2 && (i & (1 << k)))
|
|
now = (now * cnt[primes[k]]) % MOD;
|
|
ret = (ret + now) % MOD;
|
|
}
|
|
if ((i & 8) && (now = cnt[21])) {
|
|
for (int k = 0; k < 10; ++k)
|
|
if (k != 1 && k != 3 && (i & (1 << k)))
|
|
now = (now * cnt[primes[k]]) % MOD;
|
|
ret = (ret + now) % MOD;
|
|
}
|
|
}
|
|
|
|
if ((now = cnt[30]) && ((i & 7) == 7)) {
|
|
// 2 * 3 * 5 == 30
|
|
for (int j = 3; j < 10; ++j)
|
|
if (i & (1 << j))
|
|
now = (now * cnt[primes[j]]) % MOD;
|
|
ret = (ret + now) % MOD;
|
|
}
|
|
|
|
// 2 - (11, 13) + 3 - (5, 7)
|
|
if (((i & 3) == 3) && (i & 61)) {
|
|
for (int j2 = 2; j2 <= 5; ++j2) {
|
|
for (int j3 = 2; j3 <= 3; ++j3) {
|
|
if (j2 != j3 && (i & (1 << j2)) && (i & (1 << j3))) {
|
|
now = (cnt[primes[j2] << 1] * cnt[primes[j3] * 3]) % MOD;
|
|
for (int k = 2; k < 10; ++k) {
|
|
if (k != j2 && k != j3 && (i & (1 << k))) {
|
|
now = (now * cnt[primes[k]]) % MOD;
|
|
}
|
|
}
|
|
ret = (ret + now) % MOD;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
while (cnt[1]--) {
|
|
ret = (ret << 1) % MOD;
|
|
}
|
|
return ret % MOD;
|
|
}
|
|
};
|
|
|
|
int main() {
|
|
std::cout << Solution::numberOfGoodSubsets({5, 10, 1, 26, 24, 21, 24, 23, 11, 12, 27, 4, 17, 16, 2, 6, 1, 1, 6, 8, 13, 30, 24, 20, 2, 19});
|
|
return 0;
|
|
}
|