leetcode-daily/cpp/2202/220217-CN.cpp

46 lines
1.4 KiB
C++

#include <cstdio>
#include <cstring>
/**
* 688. Knight Probability in Chessboard
* On an n x n chessboard, a knight starts at the cell (row, column) and attempts to make exactly k moves. The rows and columns are 0-indexed, so the top-left cell is (0, 0), and the bottom-right cell is (n - 1, n - 1).
* A chess knight has eight possible moves it can make, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction.
*/
class Solution {
private:
inline static constexpr int dX[] = {-2, -1, 1, 2, 2, 1, -1, -2};
inline static constexpr int dY[] = {1, 2, 2, 1, -1, -2, -2, -1};
inline static constexpr bool isValid(int n, int x, int y) {
return x >= 0 && y >= 0 && x < n && y < n;
}
public:
inline static constexpr double knightProbability(int n, int k, int row, int column) {
double dp[25][25], dpNext[25][25];
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
dp[i][j] = 1.0;
for (int i = 0; i < k; ++i) {
for (int x = 0; x < n; ++x) {
for (int y = 0; y < n; ++y) {
dpNext[x][y] = 0.0;
for (int idx = 0; idx < 8; ++idx) {
if (isValid(n, x + dX[idx], y + dY[idx])) {
dpNext[x][y] += dp[x + dX[idx]][y + dY[idx]];
}
}
dpNext[x][y] /= 8.0;
}
}
std::memcpy(dp, dpNext, sizeof dp);
}
return dp[row][column];
}
};
int main() {
std::printf("%lf\n", Solution::knightProbability(3, 2, 0, 0));
return 0;
}