leetcode-daily/cpp/2304/230407.cpp

59 lines
1.7 KiB
C++

#include <iostream>
#include <queue>
#include <utility>
#include <vector>
#include <numeric>
/**
* 1020. Number of Enclaves
*
* You are given an m x n binary matrix grid, where 0 represents a sea cell and 1 represents a land cell.
* A move consists of walking from one land cell to another adjacent (4-directionally) land cell or walking off the boundary of the grid.
* Return the number of land cells in grid for which we cannot walk off the boundary of the grid in any number of moves.
*/
class Solution {
private:
static const inline int dX[] = {0, 1, 0, -1}, dY[] = {1, 0, -1, 0};
public:
static int numEnclaves(std::vector<std::vector<int>>&);
};
int Solution::numEnclaves(std::vector<std::vector<int>>& G) {
const int m = G.size(), n = G.front().size();
auto setAs0 = [&](int x, int y) {
if (G[x][y] == 0) return 0;
std::queue<std::pair<int, int>> q;
q.emplace(x, y);
int ret = 0;
std::vector<bool> vis(m * n);
for (int nx, ny; !q.empty(); q.pop()) {
auto&& [cx, cy] = q.front();
G[cx][cy] = 0;
++ret;
for (int i = 0; i < 4; ++i) {
nx = cx + dX[i];
ny = cy + dY[i];
if (nx >= 0 && nx < m && ny >= 0 && ny < n && G[nx][ny] != 0 && !vis[nx * n + ny]) {
q.emplace(nx, ny);
vis[nx * n + ny] = true;
}
}
}
return ret;
};
for (int i = 0; i < n; ++i)
setAs0(0, i), setAs0(m - 1, i);
for (int i = 1; i < m - 1; ++i)
setAs0(i, 0), setAs0(i, n - 1);
return std::transform_reduce(G.begin(), G.end(), 0, [](int x, int y){ return x + y; }, [](auto&& x) {
return std::reduce(x.begin(), x.end(), 0);
});
}
int main() {
std::vector<std::vector<int>> a {{0,0,0,0},{1,0,1,0},{0,1,1,0},{0,0,0,0}};
std::cout << Solution::numEnclaves(a);
return 0;
}