leetcode-daily/cpp/2204/220428.cpp

123 lines
3.2 KiB
C++

#include <vector>
#include <queue>
#include <iostream>
// This is wrong.
// It has nothing to do with Dijkstra.
class SolutionWrong {
public:
static int minimumEffortPath(const std::vector<std::vector<int>>& heights) {
const std::size_t m = heights.size(), n = heights.front().size(), total = m * n;
std::vector<int> d(total, 0x7FFFFFFF);
std::vector<std::vector<int>> G(total);
std::vector<bool> vis(total);
for (int i = 0; i < m * n; ++i) {
// Build graph
if (i + n < total) {
// Down
G[i].push_back(i + n);
G[i + n].push_back(i);
}
if ((i + 1) % n) {
// Right
G[i].push_back(i + 1);
G[i + 1].push_back(i);
}
}
// Pair <Dist, Node#>
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<>> q;
q.push({0, 0});
d[0] = 0;
// Dijkstra
while (!q.empty()) {
const auto [dist, idx] = q.top();
q.pop();
if (vis[idx])
continue;
vis[idx] = true;
for (int idxNext : G[idx]) {
int length = std::abs(heights[idx / n][idx % n] - heights[idxNext / n][idxNext % n]);
if (d[idxNext] > d[idx] + length) {
d[idxNext] = d[idx] + length;
q.push({d[idxNext], idxNext});
}
}
}
return d[total - 1];
}
};
/**
* 1631. Path With Minimum Effort
* You are a hiker preparing for an upcoming hike. You are given heights, a 2D array of size rows x columns, where heights[row][col] represents the height of cell (row, col). You are situated in the top-left cell, (0, 0), and you hope to travel to the bottom-right cell, (rows-1, columns-1) (i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.
* A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.
* Return the minimum effort required to travel from the top-left cell to the bottom-right cell.
*
* I was wrong again, it IS Dijkstra, but with some modification.
* d[idx] + length --> std::max(d[idx], length)
*/
class Solution {
public:
static int minimumEffortPath(const std::vector<std::vector<int>>& heights) {
const std::size_t m = heights.size(), n = heights.front().size(), total = m * n;
std::vector<int> d(total, 0x7FFFFFFF);
std::vector<std::vector<int>> G(total);
std::vector<bool> vis(total);
for (int i = 0; i < m * n; ++i) {
// Build graph
if (i + n < total) {
// Down
G[i].push_back(i + n);
G[i + n].push_back(i);
}
if ((i + 1) % n) {
// Right
G[i].push_back(i + 1);
G[i + 1].push_back(i);
}
}
// Pair <Dist, Node#>
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<>> q;
q.push({0, 0});
d[0] = 0;
// Dijkstra
while (!q.empty()) {
const auto [dist, idx] = q.top();
q.pop();
if (vis[idx])
continue;
vis[idx] = true;
for (int idxNext : G[idx]) {
int length = std::abs(heights[idx / n][idx % n] - heights[idxNext / n][idxNext % n]);
if (d[idxNext] > std::max(d[idx], length)) {
d[idxNext] = std::max(d[idx], length);
q.push({d[idxNext], idxNext});
}
}
}
return d[total - 1];
}
};
int main() {
std::vector<std::vector<int>> args {
{1, 2, 2},
{3, 8, 2},
{5, 3, 5}
};
std::cout << Solution::minimumEffortPath(args) << std::endl;
}