leetcode-daily/2201/220122.cpp

76 lines
1.9 KiB
C++

#include <cstdio>
#include <cstdint>
// Clang does not accept this constexpr Solver, but MSVC does.
template<int N>
struct Solver {
int bobs[3000];
int endPosition;
constexpr Solver() : bobs() {
int dp[N + 5][2]{{-1, 1}};
auto f = [&dp](int n, int who, auto&& fr) {
if (dp[n][who])
return dp[n][who];
for (int i = 1; i * i <= n; ++i) {
if (fr(n - i * i, who ^ 1, fr) == (who ? -1 : 1))
return dp[n][who] = (who ? -1 : 1);
}
return dp[n][who] = (who ? 1 : -1);
};
int pos = 0;
for (int i = 0; i < N + 3; ++i) {
if (f(i, 0, f) == -1){
bobs[pos++] = i;
}
}
endPosition = pos;
}
};
/**
* 1510. Stone Game IV
* Alice and Bob take turns playing a game, with Alice starting first.
* Initially, there are n stones in a pile. On each player's turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.
* Also, if a player cannot make a move, he/she loses the game.
* Given a positive integer n, return true if and only if Alice wins the game otherwise return false, assuming both players play optimally.
*/
class Solution {
private:
static constexpr Solver<100005> answer;
public:
static bool winnerSquareGame(int n) {
for (int i = 0; i < answer.endPosition; ++i) {
if (answer.bobs[i] == n) {
return false;
}
}
return true;
}
};
class SolutionOld {
private:
// 0 -> Unknown, 1 -> Alice, -1 -> Bob
// dp[n][0] -> Alice to take, [1] -> Bob to take;
int8_t dp[100005][2]{{-1, 1}};
int8_t d(int n, int8_t who) {
if (dp[n][who])
return dp[n][who];
for (int i = 1; i * i <= n; ++i) {
if (d(n - i * i, who ^ 1) == (who ? -1 : 1))
return dp[n][who] = (who ? -1 : 1);
}
return dp[n][who] = (who ? 1 : -1);
}
public:
bool winnerSquareGame(int n) {
return d(n, 0) == 1;
}
};
int main() {
SolutionOld solver;
std::printf("%s\n", Solution::winnerSquareGame(4) ? "true" : "false");
return 0;
}