76 lines
2.9 KiB
C++
76 lines
2.9 KiB
C++
#include <iostream>
|
|
#include <vector>
|
|
#include <cstring>
|
|
|
|
/**
|
|
* 1463. Cherry Pickup II
|
|
* You are given a rows x cols matrix grid representing a field of cherries where grid[i][j] represents the number of cherries that you can collect from the (i, j) cell.
|
|
* You have two robots that can collect cherries for you:
|
|
* Robot #1 is located at the top-left corner (0, 0), and
|
|
* Robot #2 is located at the top-right corner (0, cols - 1).
|
|
* Return the maximum number of cherries collection using both robots by following the rules below:
|
|
* From a cell (i, j), robots can move to cell (i + 1, j - 1), (i + 1, j), or (i + 1, j + 1).
|
|
* When any robot passes through a cell, It picks up all cherries, and the cell becomes an empty cell.
|
|
* When both robots stay in the same cell, only one takes the cherries.
|
|
* Both robots cannot move outside of the grid at any moment.
|
|
* Both robots should reach the bottom row in grid.
|
|
*
|
|
* Input: grid = [[3,1,1],[2,5,1],[1,5,5],[2,1,1]]
|
|
* Output: 24
|
|
* Explanation: Path of robot #1 and #2 are described in color green and blue respectively.
|
|
* Cherries taken by Robot #1, (3 + 2 + 5 + 2) = 12.
|
|
* Cherries taken by Robot #2, (1 + 5 + 5 + 1) = 12.
|
|
* Total of cherries: 12 + 12 = 24.
|
|
*/
|
|
|
|
class Solution {
|
|
private:
|
|
int dp[70][70][70];
|
|
public:
|
|
int cherryPickup(const std::vector<std::vector<int>>& grid) {
|
|
int m = grid.size();
|
|
int n = grid[0].size();
|
|
|
|
// Set as -INF
|
|
std::memset(this->dp, 0xC0, sizeof this->dp);
|
|
this->dp[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
|
|
for (int i = 1; i < m; ++i) { // i <- row
|
|
for (int j = 0; j < n; ++j) { // j <- col of robot 1
|
|
for (int k = 0; k < n; ++k) { // k <- robot 2
|
|
int thisPick = (j == k) ? (grid[i][j]) : (grid[i][j] + grid[i][k]);
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j][k] + thisPick);
|
|
if (k > 0)
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j][k - 1] + thisPick);
|
|
if (k < n - 1)
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j][k + 1] + thisPick);
|
|
if (j > 0) {
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j - 1][k] + thisPick);
|
|
if (k > 0)
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j - 1][k - 1] + thisPick);
|
|
if (k < n - 1)
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j - 1][k + 1] + thisPick);
|
|
}
|
|
if (j < n - 1) {
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j + 1][k] + thisPick);
|
|
if (k > 0)
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j + 1][k - 1] + thisPick);
|
|
if (k < n - 1)
|
|
dp[i][j][k] = std::max(dp[i][j][k], dp[i - 1][j + 1][k + 1] + thisPick);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
int ret = -(0x7FFFFFFF) - 1;
|
|
for (int i = 0; i < n; ++i)
|
|
for (int j = 0; j < n; ++j)
|
|
ret = std::max(ret, dp[m - 1][i][j]);
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
int main() {
|
|
Solution solver{};
|
|
auto ret = solver.cherryPickup({{1,0,0,0,0,0,1},{2,0,0,0,0,3,0},{2,0,9,0,0,0,0},{0,3,0,5,4,0,0},{1,0,2,3,0,0,6}});
|
|
std::cout << ret;
|
|
return 0;
|
|
} |