#include #include /** * 587. Erect the Fence * You are given an array trees where trees[i] = [xi, yi] represents the location of a tree in the garden. * You are asked to fence the entire garden using the minimum length of rope as it is expensive. The garden is well fenced only if all the trees are enclosed. * Return the coordinates of trees that are exactly located on the fence perimeter. * * Note: it is all about computing the convex hull. */ class Solution { public: static std::vector> outerTrees(std::vector>& trees) { std::sort(trees.begin(), trees.end(), [](const std::vector& x, const std::vector& y) { return x[0] == y[0] ? x[1] < y[1] : x[0] < y[0]; }); int n = trees.size(); std::vector> top, bottom; auto CrossProduct = [](const std::pair& x, const std::pair& y) { // x, y are vectors return x.first * y.second - x.second * y.first; }; std::for_each(trees.cbegin(), trees.cend(), [&](const std::vector& p) { while (bottom.size() > 1 && [&](){ int n = bottom.size(); const auto& b1 = bottom[n - 1]; const auto& b2 = bottom[n - 2]; return CrossProduct({b1[0] - b2[0], b1[1] - b2[1]}, {p[0] - b1[0], p[1] - b1[1]}) < 0; }()) bottom.pop_back(); bottom.push_back(p); }); std::for_each(trees.crbegin(), trees.crend(), [&](const std::vector& p) { while (top.size() > 1 && [&](){ int n = top.size(); const auto& b1 = top[n - 1]; const auto& b2 = top[n - 2]; return CrossProduct({b1[0] - b2[0], b1[1] - b2[1]}, {p[0] - b1[0], p[1] - b1[1]}) < 0; }()) top.pop_back(); top.push_back(p); }); std::vector> ret; bool x[65536]{}; for (const auto& p : top) { if (x[(p[0] << 8) | p[1]]) continue; x[(p[0] << 8) | p[1]] = true; ret.push_back(p); } for (const auto& p : bottom) { if (x[(p[0] << 8) | p[1]]) continue; x[(p[0] << 8) | p[1]] = true; ret.push_back(p); } return ret; } };