#include #include #include #include #include /** * 1020. Number of Enclaves * * You are given an m x n binary matrix grid, where 0 represents a sea cell and 1 represents a land cell. * A move consists of walking from one land cell to another adjacent (4-directionally) land cell or walking off the boundary of the grid. * Return the number of land cells in grid for which we cannot walk off the boundary of the grid in any number of moves. */ class Solution { private: static const inline int dX[] = {0, 1, 0, -1}, dY[] = {1, 0, -1, 0}; public: static int numEnclaves(std::vector>&); }; int Solution::numEnclaves(std::vector>& G) { const int m = G.size(), n = G.front().size(); std::vector vis(m * n); auto setAs0 = [&](int x, int y) { if (G[x][y] == 0) return 0; std::queue> q; q.emplace(x, y); int ret = 0; for (int nx, ny; !q.empty(); q.pop()) { auto&& [cx, cy] = q.front(); G[cx][cy] = 0; ++ret; for (int i = 0; i < 4; ++i) { nx = cx + dX[i]; ny = cy + dY[i]; if (nx >= 0 && nx < m && ny >= 0 && ny < n && G[nx][ny] != 0 && !vis[nx * n + ny]) { q.emplace(nx, ny); vis[nx * n + ny] = true; } } } return ret; }; for (int i = 0; i < n; ++i) setAs0(0, i), setAs0(m - 1, i); for (int i = 1; i < m - 1; ++i) setAs0(i, 0), setAs0(i, n - 1); return std::transform_reduce(G.begin(), G.end(), 0, [](int x, int y){ return x + y; }, [](auto&& x) { return std::reduce(x.begin(), x.end(), 0); }); } int main() { std::vector> a {{0,0,0,0},{1,0,1,0},{0,1,1,0},{0,0,0,0}}; std::cout << Solution::numEnclaves(a); return 0; }