#include #include /** * 1091. Shortest Path in Binary Matrix * Given an n x n binary matrix grid, return the length of the shortest clear path in the matrix. If there is no clear path, return -1. * * A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)) to the bottom-right cell (i.e., (n - 1, n - 1)) such that: * * All the visited cells of the path are 0. * All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner). * The length of a clear path is the number of visited cells of this path. */ class Solution { public: static int shortestPathBinaryMatrix(const std::vector>& grid) { const int n = grid.size(); if (grid[0][0]) return -1; std::vector vis(n * n); int queue[10003]; // Array emulated int front = 0, rear = 1; // queue while (rear > front) { int pos = queue[front++]; // pos = x * n + y; int depth = pos >> 16; pos &= 0xFFFF; int y = pos % n, x = pos / n; if (x == n - 1 && y == n - 1) { return depth + 1; } for (int i = -1; i <= 1; ++i) { for (int j = -1; j <= 1; ++j) { if ((!i && !j) || (x + i < 0 || x + i >= n || y + j < 0 || y + j >= n) || vis[pos + j + i * n] || grid[x + i][y + j]) continue; vis[pos + j + i * n] = true; queue[rear++] = (pos + j + i * n) | ((1 + depth) << 16); } } } return -1; } }; int main() { std::cout << Solution::shortestPathBinaryMatrix({{0,0,0},{1,1,0},{1,1,0}}); }