#include #include #include /** * 798. Smallest Rotation with Highest Score * You are given an array nums. You can rotate it by a non-negative integer k so that the array becomes [nums[k], nums[k + 1], ... nums[nums.length - 1], nums[0], nums[1], ..., nums[k-1]]. Afterward, any entries that are less than or equal to their index are worth one point. * - For example, if we have nums = [2,4,1,3,0], and we rotate by k = 2, it becomes [1,3,0,2,4]. This is worth 3 points because 1 > 0 [no points], 3 > 1 [no points], 0 <= 2 [one point], 2 <= 3 [one point], 4 <= 4 [one point]. * Return the rotation index k that corresponds to the highest score we can achieve if we rotated nums by it. If there are multiple answers, return the smallest such index k. */ class Solution { public: static int bestRotation(const std::vector& nums) { int n = nums.size(), rotates[n]; std::memset(rotates, 0, sizeof rotates); for (int i = 0; i < n; ++i) if (nums[i] < n) ++rotates[(i - nums[i] + 1 + n) % n]; int ret = 0, retMax = 0; for (int i = 0; i < n; ++i) if (nums[i] <= i) ++retMax; int now = retMax; for (int i = 1; i <= n; ++i) { // i -> i + 1 now -= rotates[i % n]; if (nums[i - 1] < n) ++now; if (now > retMax) { retMax = now; ret = i; } } return ret % n; } }; int main() { std::cout << Solution::bestRotation({2,3,1,4,0}) << "\n"; std::cout << Solution::bestRotation({1,3,0,2,4}); return 0; }